Multiple solutions for the -Laplace operator with critical growth
نویسندگان
چکیده
منابع مشابه
MULTIPLE SOLUTIONS FOR THE p−LAPLACE OPERATOR WITH CRITICAL GROWTH
In this paper we show the existence of at least three nontrivial solutions to the following quasilinear elliptic equation −∆pu = |u| ∗ u + λf(x, u) in a smooth bounded domain Ω of R with homogeneous Dirichlet boundary conditions on ∂Ω, where p = Np/(N − p) is the critical Sobolev exponent and ∆pu = div(|∇u|∇u) is the p−laplacian. The proof is based on variational arguments and the classical con...
متن کاملp-brane solutions and Beltrami-Laplace operator
Generalization of the harmonic superposition rule for the case of dependent choice of harmonic functions is given. Dependence of harmonic functions from all (relative and overall) transverse coordinates is considered using the BeltramiLaplace operator. Supersymmetry of IIB 10D supergravity solutions with only non-vanished 5-form field and 11D supergravity solutions is discussed.
متن کاملInverse Laplace transform method for multiple solutions of the fractional Sturm-Liouville problems
In this paper, inverse Laplace transform method is applied to analytical solution of the fractional Sturm-Liouville problems. The method introduces a powerful tool for solving the eigenvalues of the fractional Sturm-Liouville problems. The results how that the simplicity and efficiency of this method.
متن کاملExistence of three solutions for a class of quasilinear elliptic systems involving the $p(x)$-Laplace operator
The aim of this paper is to obtain three weak solutions for the Dirichlet quasilinear elliptic systems on a bonded domain. Our technical approach is based on the general three critical points theorem obtained by Ricceri.
متن کاملInfinitely many solutions for three classes of self-similar equations, with the p-Laplace operator
We study the global solution curves, and prove the existence of infinitely many positive solutions for three classes of self-similar equations, with p-Laplace operator. In case p = 2, these are well-known problems involving the Gelfand equation, the equation modeling electrostatic micro-electromechanical systems (MEMS), and a polynomial nonlinearity. We extend the classical results of D.D. Jose...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nonlinear Analysis: Theory, Methods & Applications
سال: 2009
ISSN: 0362-546X
DOI: 10.1016/j.na.2009.06.036